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Projects:

1. Drug sensitivity prediction for efficient screening
a. Drug screening platform, pipeline
b. PaccMann: open source model of cancer drug sensitivity by IBM

2. Optimizing a mathematical model of cancer therapy using differentiable

programming

a. Cancer therapy as dynamical system
b. Optimal control problem



1 .Personalized treatment

PDO imaged-based drug screening platform - overview PDO = patient-derived organoid
University Hospital Basel :gj‘
F_"_ ~ Basic + -
h—a\d Translational , Yokogawa CQ1
. Scientists

Microscopy + Screening Scientists

« Automated confocal microscopy
* Maintenance
« Data transfer

* Processing BC tissues

* Breast cancer PDO cultures:
Establishment, Expansion and
Characterization

= Single cell + organoid quantification
+ Evaluation + analysis Image + Data Sclentist




1. Personalized treatment

PDO imaged-based drug screening platform - overview PDO = patient-derived organoid

=

University Hospital Basel

o * Baslc +
}rbﬂ * Translational , Yokogawa CQ1
B Sclentists

Microscopy + Screening Scientists

« Automated confocal microscopy

« Maintenance

Data transfer

* Processing BC tissues

+ Breast cancer PDO cultures:
Establishment, Expansion and

Characterization The amount of

biological material is limited
_)

not all drugs can be tested

« Single cell + organoid quantification

= Evaluation + analysis Image + Data Scientist




Personalized treatment

predictive model: input — transcriptomic profile of the tumor
output — drug efficacy
PDO imaged-based drug screening platform - overvi PDO = patient-derived organoid
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1. PaccMann: predictive model by IBM

e trained on GDSC data
Genomics of Drug Sensitivity in Cancer
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1. PaccMann: predictive model by IBM

e trained on GDSC data
Genomics of Drug Sensitivity in Cancer
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e Can 2D cell lines be a good training set
for predictions for patients’ samples?

e Perhaps a different source of
the training data (TSGA database)?
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2. Optimizing a model of cancer therapy

Cancer therapy as dynamical system

Model of bone marrow under chemotherapy P a Q
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e P: proliferating bone marrow cell mass, Q: quiescent bone marrow cell
mass

e ~: growth rate of cycling cells

e «: transition rate from proliferating to resting
e (3: transition rate from resting to proliferating
e §: natural cell decay, \: quiescent cell loss

e 0 < f(t) < 1: time-dependent dosage of the chemotherapeutic treatment
with amplitude s
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Cancer therapy as dynamical system
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e P: proliferating bone marrow cell mass, Q: quiescent bone marrow cell
mass
e ~: growth rate of cycling cells
Optimal control problem:

Maximize the dose while maintaining
e (3: transition rate from resting to proliferating bone marrow cell mass

e «: transition rate from proliferating to resting

e §: natural cell decay, \: quiescent cell loss

e 0 < f(t) < 1: time-dependent dosage of the chemotherapeutic treatment
with amplitude s



2. Optimizing a model of cancer therapy

Let’s employ the workhorse of machine learning:
automatic differentiation

Bias

Features

(X) Output

NNy : X — f(X)
0 : parameters of the network




2. Optimizing a model of cancer therapy

Let’s employ the workhorse of machine learning: Implement the task in a form

automatic differentiation of loss function £ that needs
Bias to be minimized
N
\ B L=3751 %A= f(t:)) — 2 (P(ts) + Q(t:))

™~

maximize the dose  maximize the overall cell number

Features

*

Output using AD compute gradients %

NNy : X — f(X)

0 : pe ters of the network T
REEESEE S Update parameters 6 in direction

given by the gradient
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2. Differentiable programming (J0P)

Not only the NNs but whole segments of the code (like ODE solver for
example) are fully differentiable = can get gradients with AD
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Not only the NNs but whole segments of the code (like ODE solver for
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