

SysBioCancer 2021, Institut Curie

Michal Kloc

Bentires-Alj Lab, University Hospital Basel, Switzerland, September 27, 2021

Outline

Projects:

- 1. Drug sensitivity prediction for efficient screening
 - a. Drug screening platform, pipeline
 - b. PaccMann: open source model of cancer drug sensitivity by IBM
- 2. Optimizing a mathematical model of cancer therapy using differentiable programming
 - a. Cancer therapy as dynamical system
 - b. Optimal control problem

1 .Personalized treatment

1. Personalized treatment

1. Personalized treatment

1. PaccMann: predictive model by IBM

Relative sensitivity of MDA-MB-231 • trained on GDSC data Genomics of Drug Sensitivity in Cancer resistant Drugs (ranked by cell line sensitivity) IC50 Z-Sco Export: CSV TSV Z score Cell Line -2 64526 MCT4_1422 -2.45049 -2.32604 input output Molecular Structure Parallel Conv. Charmain = 4 SMILES: CC1=CC(= ... =C3)NN=C4N Biomolecular Gene Attention (GA) Data SMILES CNN THE Network half maximal

inhibitory concentration

1. PaccMann: predictive model by IBM

• trained on GDSC data Genomics of Drug Sensitivity in Cancer

- Can 2D cell lines be a good training set for predictions for patients' samples?
- Perhaps a different source of the training data (TSGA database)?

Cancer therapy as dynamical system Model of bone marrow under chemotherapy

$$\begin{bmatrix} \frac{dP}{dt} \\ \frac{dQ}{dt} \end{bmatrix} = \begin{bmatrix} \gamma - \alpha - \delta - sf(t) & \beta \\ \alpha & -\beta - \lambda \end{bmatrix} \begin{bmatrix} P \\ Q \end{bmatrix}$$

- P: proliferating bone marrow cell mass, Q: quiescent bone marrow cell mass
- γ: growth rate of cycling cells
- α : transition rate from proliferating to resting
- β : transition rate from resting to proliferating
- \bullet $\delta:$ natural cell decay, $\lambda:$ quiescent cell loss
- 0 $\leq f(t) \leq$ 1: time-dependent dosage of the chemother apeutic treatment with amplitude s

Cancer therapy as dynamical system Model of bone marrow under chemotherapy

$$\begin{bmatrix} \frac{dP}{dt} \\ \frac{dQ}{dt} \end{bmatrix} = \begin{bmatrix} \gamma - \alpha - \delta - sf(t) & \beta \\ \alpha & -\beta - \lambda \end{bmatrix} \begin{bmatrix} P \\ Q \end{bmatrix}$$

- P: proliferating bone marrow cell mass, Q: quiescent bone marrow cell mass
- γ: growth rate of cycling cells
- α : transition rate from proliferating to resting
- β : transition rate from resting to proliferating
- \bullet $\delta:$ natural cell decay, $\lambda:$ quiescent cell loss
- 0 $\leq f(t) \leq$ 1: time-dependent dosage of the chemother apeutic treatment with amplitude s

Optimal control problem:
Maximize the dose while maintaining
bone marrow cell mass

Let's employ the workhorse of machine learning:

automatic differentiation

Let's employ the workhorse of machine learning: Implement the task in a form of loss function \mathcal{L} that needs automatic differentiation to be minimized Bias $\mathcal{L} = \sum_{i=1}^{N} \frac{c_1}{2} (1 - f(t_i)) - c_2 (P(t_i) + Q(t_i))$ +1Bias maximize the dose maximize the overall cell number f(X)Features using AD compute gradients $\frac{\partial \mathcal{L}}{\partial q}$ (X)Output $NN_{\theta}: \mathbf{X} \to f(\mathbf{X})$... θ : parameters of the network Update parameters θ in direction X_n given by the gradient NN_{θ} $\theta_i o \theta_i - \eta \frac{\partial \mathcal{L}}{\partial \theta_i}$

Not only the NNs but whole segments of the code (like ODE solver for example) are fully differentiable \Rightarrow can get gradients with AD

Not only the NNs but whole segments of the code (like ODE solver for example) are fully differentiable \Rightarrow can get gradients with AD

I think better is scientific machine learning

Not only the NNs but whole segments of the code (like ODE solver for example) are fully differentiable \Rightarrow can get gradients with AD

I think better is scientific machine learning

Not only the NNs but whole segments of the code (like ODE solver for example) are fully differentiable \Rightarrow can get gradients with AD

I think better is *scientific machine learning*

References

PaccMann (IBM)

Manica, M., Oskooei, A., Born, J., Subramanian, V., Sáez-Rodríguez, J., and Rodríguez Martínez, M. (2019). *Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders.* Molecular Pharmaceutics, 16 (12), 4797-4806.

cancer therapy models

Panetta, J. C., and Fister, K. R. (2000). *Optimal control applied to cell-cycle-specific cancer chemotherapy*. SIAM Journal on Applied Mathematics, 60 (3), 1059-1072.

Differentiable Programming

- Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V. B., and Tebbutt, W. (2019). A differentiable programming system to bridge machine learning and scientific computing. arXiv preprint arXiv:1907.07587.
- Schäfer, F., Sekatski, P., Koppenhöfer, M., Bruder, C., and Kloc, M. (2021). Control of stochastic quantum dynamics by differentiable programming. Machine Learning: Science and Technology, 2(3), 035004.

Thanks for your attention.